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1. Introduction 

The Chinese power sector is among the world's top emitters, accounting for about 14% of 
global energy-related carbon emissions.1 Falling renewable and storage costs have created 
significant new opportunities for rapid power sector decarbonization that were not possible a 
few years ago. Some recent studies using the latest renewable energy and battery cost trends 
have shown that by 2030, China can cost-effectively decarbonize up to 60% of its power sector. 
2  
Recognizing the growing opportunities to boost its climate leadership and sustainable 
development, China pledged to reach carbon neutrality by 2060 in September 2020.  Further, it 
set a target for installing 1200 GW of solar and wind power by 2030.3 While rapid 
decarbonization of the power sector and electrification of other end-use sectors are considered 
key strategies to reach carbon neutrality, there is still considerable debate within China on the 
operational challenges of maintaining a renewable-dominant power system.4,5 In this article, we 
assess the operational feasibility of near-complete decarbonization of China's power sector by 
2030 using hourly system dispatch and operations simulation at the provincial level. The 
measures under consideration include enlarging balancing areas beyond the current provincial 
boundary, expanding transmission capacity, making existing coal power plants more flexible, 
and siting renewables near load centers.  
 

2. Literature Review  

Overcoming the operational challenges of integrating higher penetrations of renewable energy 
into the grid requires changes in operations, markets, and investment planning. Existing 
research on addressing renewable variability and promoting renewable integration has focused 
on several main roadmaps: 6–8 transmission,9  larger balancing area, storage,10 demand 
response, power system operation, electricity market, and integrating supply-load 
transmissions.11 Cochran (2015) and Martinot (2016) summarize the key grid integration 
strategies and identify markets and system operations as the lowest-cost sources of increased 
grid flexibility.8,12  Batteries and other energy storage resources, especially long-duration energy 
storage, also become crucial at higher levels of penetration.10,13 Demand response could be 
used in enhancing grid flexibility, offering a viable, cost-effective alternative to supply-side 
investments.14–16 Market design is also vital to ensuring resource adequacy and sufficient 
revenues to recover costs when those resources are needed for long-term reliability with high 
penetration of renewables,17 and to align with other market instruments such as emission 
trading systems (ETS).18 

At the regional scale, NREL's Renewable Electricity Futures Study explores the 
implications and challenges of very high renewable electricity generation levels in the U.S. It 
shows it is possible to achieve an 80% renewable grid by 2050 with grid flexibility coming from 
a portfolio of supply- and demand-side options, including flexible conventional generation, grid 
storage, new transmission, more responsive loads, and changes in power system 
operations.19–21 A more recent study shows reaching 90% carbon-free electricity by 2035 is 
possible due to plummeting solar, wind, and storage costs.22  Similar results are reported in the 
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E.U., India, and other parts of the world. For example, the E.U. Energy Roadmap 2050 shows 
the E.U. could achieve a 100% renewable grid by emphasizing the role of storage and 
hydrogen.23,24 Deshmukh (2021) and Abhyankar (2021) assess renewable integration in India 
and find that diurnal energy storage equivalent to about 10% of the average daily renewable 
energy generation would be needed to reliably integrate renewable energy penetration of up to 
40-50%.25  
Several studies assess the overall potential of power system decarbonization in China; very 
few examine the key operational-level details and challenges. China's Energy Research 
Institute (2015) explores pathways by which renewable energy could account for over 60% of 
the energy consumption and over 85% of the electricity consumption by 2050.4 He et al. (2020) 
determine that China could have more than 60% of its electricity from low-carbon sources by 
2030 facilitated by low-cost renewables. Yuan et al. (2020) use Jilin province as a case study 
for evaluating system flexibility at a 40% renewable penetration rate and proposed upgrading 
coal and natural gas plants and integrating supply, transmission, load, and storage assets.26 
Ding et al. (2021) use Jiangsu as an example and show that retrofitting coal units to meet peak 
load could improve system flexibility.27  Lin et al. (2019) and Abhyankar et al. (2020) study the 
benefits of economic dispatch and electricity markets in Guangdong and the Southern Grid.28,29  
Researches also discuss the role of micro-grid, demand response, and integration with 
transportation and building sectors to reduce renewable curtailment and increase system 
flexibility with high renewable penetration. However, the interactions and trade-offs between 
these approaches are not well understood. Our work fills this critical gap by assessing the 
impact and effectiveness of different approaches and providing insight into accelerating China's 
renewable energy development. 
 

3. Methods and Data 

Studies assessing the impacts of high renewable energy penetration on electric power systems 
use various optimization tools, namely production cost models, capacity expansion models, or 
a combination of these. Capacity expansion models incorporate both fixed and variable costs of 
existing and planned generation, storage, demand-side resources, and transmission 
infrastructure to choose an optimal mix of assets to meet electricity demand across future 
years. Production cost models simulate grid dispatch using only variable costs for a given 
power generation mix and transmission capacity to meet electricity demand at the least cost. 
Typically, capacity expansion models have lower temporal resolution and a less detailed 
representation of the electricity system as they optimize the system across multiple years. 
Conversely, production cost models have higher temporal resolution (minutes to hours) and a 
more detailed representation of the electricity system but typically simulate the system across 
only one year.  

We use PLEXOS, an industry-standard optimization software by Energy Exemplar used 
by grid operators and utilities worldwide. PLEXOS optimizes the unit commitment and 
economic dispatch decisions using mixed-integer programming to minimize an objective 
function of costs, subject to constraints including load, emissions, transmission, and generator 
ramp rate limits. We use the Xpress-MP 28.01.13 mathematical solver for the optimization, with 
a mixed-integer programming gap of 0.5%. We simulate grid dispatch using only variable costs 
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and operational constraints for a given power generation mix and transmission capacity to meet 
electricity demand at the least cost. We use SWITCH-China for capacity expansion analysis 
based on the scenarios defined in He et al. (2020). 

Based on He et al. (2020), we develop the following scenarios for assessing the 
operational feasibility of a decarbonized Chinese power system. First, the business-as-usual 
scenario (BAU) assumes the continuation of current policies and moderate cost decreases in 
future renewable costs. Second, a low-cost renewables scenario (RE) assumes the rapid 
decrease in costs for renewables and storage will continue. Third, a carbon constraints 
scenario (C50) caps carbon at 50% lower than the 2015 level by 2030. Fourth, a deep carbon 
constraints scenario (C80) further constrains the carbon emissions from the power sector to be 
80% lower than the 2015 level by 2030.  

Building upon these four renewable energy penetration scenarios (BAU, RE, C50, C80), 
we examine different grid operation and dispatch strategies for three factors: coal power-plant 
flexibility, balancing area, and transmission constraints.  

For coal flexibility, we compare a baseline case with a flexible coal plant operation case. 
The technical minimum generation level is assumed to be 25% of rated capacity (Flex25) 
compared with 50% in the base case. The ramping capability is assumed to be 2% per minute 
compared with 1% per minute in the base case.  

For balancing areas, we define three cases to compare the effect of enlarging balancing 
areas: provincial balancing, regional balancing, and national balancing. China's current 
dispatch practice is closest to a provincial balancing, but not exactly.   

For transmission constraints, we consider economic hurdles to building new 
transmission capacity, which would encourage more dispersed renewable investment. We 
assume one case with no transmission hurdle rate and second case with 1000 USD/MW-km 
investment cost for new transmission lines. The combined total scenarios add up to 48.  

We also apply cost assumptions in our analyses, which can be found in Appendix A. 
 

4. Results  

Figure 1 presents the installed capacity and generation mixes across the four main carbon 
mitigation scenarios in 2030 under the current provincial balance practice. The results show 
that the curtailment rate of renewable energy increases significantly as their penetration rate 
increases (up to 37% if the current provincial balancing model continues). This is expected, as 
the current operational practice is unlikely to support China's ambitious plan to transition to a 
renewable-dominant power system to meet its carbon neutrality target. Therefore, we aim to 
evaluate several options for addressing operational challenges more thoroughly as China's 
power system evolves into a renewable-centric system.  
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Figure 1. Installed capacity and generation by technology in 2030 under different carbon-

mitigation scenarios (1a) and with the current provincial balancing (1b) 
  
Overall, allowing (through retrofit) coal power plants to be more flexible offers little 

improvement in renewable energy utilization in all scenarios. As shown in Figure 2, renewable 
curtailment remains almost the same (flex 25 vs. base case) under all scenarios (BAU, RE, 
C50, C80) with provincial balancing, as does coal power generation.  In fact, curtailment of 
renewable energy more than doubles from the RE to the C50 scenario, indicating that the 
current provincial balancing model is inadequate to solve the renewable integration challenge 
even when retrofitting coal power plants for more flexibility. The maximum curtailment of 
renewable energy tends to occur in the spring due to lower seasonal demand (Figure 2b). 
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Figure 2. China national annual power generation by technology with two levels of coal flexibility 
under four renewable energy scenarios (2a) and average national dispatch with twos level of coal 

flexibility under the RE scenario (2b) 
 

However, enlarging balancing areas reduces renewable curtailment significantly while 
maintaining grid reliability constraints (with a reserve margin of 15%). Figure 3 shows national 
annual generation and average dispatch in selected months under different balancing area 
scenarios. Moving from provincial balancing to regional balancing significantly reduces 
curtailment rates (6% under RE, 7% under C50, and 5% under C80).  Under a national 
balancing scenario, additional renewable generation can be utilized, and curtailment rates can 
be further reduced (11%, 15%, and 21% reduction under RE, C50, and C80, respectively, 
compared to provincial balancing). Similar patterns hold for seasonal renewable curtailment 
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(Figure 3b); regional and national balancing leads to significant reductions in renewable 
curtailment. 

Moreover, the effect of reducing coal power generation increases with larger balancing 
areas and more renewable integration (2% under RE, 8% under C50, and 31% under C80 with 
regional balancing; and 6% under RE, 21% under C50, and 45% under C80 with national 
balancing). Again, the role of enlarging balancing areas becomes central as China's power 
system moves toward a greater degree of renewable generation. 
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Figure 3. China national annual generation (all scenarios) (3a) and average dispatch in typical 
months (RE scenario) with provincial, regional, and national balancing (3b) 
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As renewable power costs further decline and China raises its ambition for renewable 

installation, the question becomes: What is the more balanced way to build out renewable 
capacity across the country? Figure 4 shows the difference in generation from different fuel 
types between a no and a high transmission hurdle rate, which would encourage more local 
renewable investment.  As shown in Figure 4, renewable curtailment and coal generation drop 
in all scenarios with a 1000 USD/MW-km transmission hurdle rate. This result demonstrates 
that investing in renewable energy in a more distributed way can achieve additional reductions 
in both curtailment and coal generation. Even under the provincial balancing scenario, 
reductions in the curtailment rate (4%-10%) and in coal generation (6%-9%) can be achieved 
with a high hurdle rate compared with no transmission hurdle rate. These benefits are 
comparable with establishing regional balancing areas.  

 
Figure 4. China national annual generation (4a) and average dispatch (RE scenario) with no 
transmission hurdle rate compared with a 1000 USD/MW-km transmission hurdle rate (4b) under 
provincial balancing 
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Overall, combining larger balancing areas and more locally based renewable 

investment could have the highest impact. As shown in Figure 5, with regional balancing and 
more local renewable development, curtailment rates drop to 2%, 13%, 26% under RE, C50 
and C80 scenarios (compared with 15%, 28%, 37% with provincial balancing and less 
distributed renewable investment), respectively, while coal generation declines by 7%, 16%, 
and 26% under RE, C50, and C80 scenarios, respectively. 

Under national balancing and more local renewable development, curtailment rates 
reduce to 0.2%, 5%, and 13% under RE, C50, and C80 scenarios, respectively; coal generation 
declines 8%, 29%, and 58% under RE, C50, and C80 scenarios, respectively. 
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Figure 5. China national annual generation (all scenarios) (5a) and average dispatch (RE scenario) 
with no transmission hurdle rate with provincial balancing area compared with a 1000 USD/MW-
km transmission line investment constraint (5b) with larger balancing areas 
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These operation strategies that enhance system reliability would also reduce the 

average wholesale costs of electricity, as shown in Figure 6. Under the RE scenario, adopting a 
regional balancing strategy could reduce the average cost by 5.1%, and by 6.1%, with national 
balancing.  Under the C50 scenario, similar cost savings would be 7.6% and 12%, respectively.  
 

 
Figure 6. Average wholesale cost of electricity (fixed costs included) under different scenarios 

 

5. Discussion 

As China scales up its renewable development ambitions, there is a growing concern about 
how China could cost-effectively maintain grid flexibility—and thus reliability—while meeting its 
2060 carbon neutrality target. Technically retrofitting coal power plants has often been 
considered a first choice in China. However, our analysis shows that retrofitting coal power 
plants contributes little to total system flexibility, renewable integration, and system reliability, 
primarily because there is already a large amount of excess coal power available in China  

In contrast, reforming its current power system operation practices and market rules to 
allow larger balancing areas, such as at a regional level, would significantly contribute to 
enhancing flexibility, integrating renewables, and ensuring grid reliability. Regional power 
markets, such as those considered in the southern grid region of China, could be instrumental 
in facilitating such a transition. 

As the costs of renewables continue to decline, they become more competitive against 
coal power in more load-center regions and provinces. Investing in such local resources would 
not only save investment in long-distance transmission but also reduce curtailment and 
enhance reliability. In addition, local generation projects would also lead to more local 
investment and jobs. Thus, these local economic benefits would lead to more political support 
for a clean energy transition among the Chinese provinces, which tend to trail the national 
government in clean energy and climate ambitions. 
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Combining such operation, market reform, and investment strategies will likely yield the 
best outcome for integrating renewable energy and enhancing reliability. Such combined 
approaches are essential to achieve deep decarbonization of China's power system.  

These results suggest that China should accelerate its power system reform, allowing 
regional markets and enlarging operation balancing areas. Leaving this system operation 
challenge (as well as resource planning) unresolved would seriously hinder renewable 
development. Fortunately, regional dispatch centers across China's six regional grids already 
exist; their functions need to be strengthened. Furthermore, wholesale market development 
should allow price signals to play a larger role in affecting power demand and supply. As we 
have shown previously, the regional market generates economic benefits for all provinces 
within the regional grids.  

As costs of renewable and storage technologies decline further, it will become more 
attractive for economically vibrant provinces to develop in-province resources. The current 
planning approaches need to evolve, incorporating these trends to allow for more diversity in 
China's infrastructure portfolio, enhancing system resilience and local political support in 
Chinese provinces. As China accelerates its renewable energy transition to reach carbon 
neutrality by 2060, it is essential to simultaneously develop a comprehensive set of the 
institutional options discussed above to ensure a smooth transition to a clean and reliable grid 
in China.  
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 Cost Assumptions  

For capital cost, which are amortized over the expected lifetime of each generator or 
transmission line, only capital payments that occur during the period covered by the study are 
included in the objective function. Modeled capital costs for coal, gas, hydro, and nuclear plants 
include trends to 2030 for different sizes and technologies of these plants. Costs are assumed 
to increase for hydro and nuclear power plants but stay relatively constant for coal and gas 
plants between 2015 and 2030, respectively. For renewable units, we use two different cost 
trajectories for battery storage, solar, and wind power technologies. Under the BAU scenarios, 
costs fall but remain relatively high until pass 2030. The RE, C50, and C80 scenarios assume 
that lower costs for storage, solar, and wind power technologies are expected.  

Under the BAU scenario, we assume that capital costs in 2030 are lower than in 2015 
by 26, 31, and 6% for solar, storage, and wind technologies, respectively. On the other hand, 
under the low-cost assumption, applied in the RE and C scenarios in the main study, 2030 
capital costs for solar, storage and wind, are lower than 2015 costs by 80, 57, and 66%, 
respectively. Technology adoption, learning-by-doing, economies of scale, and manufacturing 
localization are driving the cost decease of wind technology, and similar effect could be found 
in the innovation and cost decease of solar PV, and storage. The onshore wind and battery 
storage capital costs are informed by the 2018 NREL Annual Technology Baseline study. 

For fuel cost, average national fuel costs for coal and gas in 2017 are $4.5/MMBtu and 
$12.9/MMBtu, respectively. Fuel costs for coal, gas, and nuclear power plants all increase from 
2017 to 2030 by 12.5, 23.7, and 21.4%, respectively. Provincial costs of coal are based on the 
national benchmark price at Qinhuangdao, minus/plus coal transportation costs. In 2030, coal, 
gas, and nuclear fuel costs increase to $5.14, $16.9, and $0.98 per MMBtu, respectively.  

For operation and maintenance (O&M) costs, we use operation and maintenance costs 
in addition to capital and fuel costs to calculate total system costs over a period of time. O&M 
costs are assumed to stay fairly constant for coal, gas, and hydro power plants. Only nuclear 
power plants O&M costs see a slight increase between 2015 and 2030. Hydropower plants 
have the lowest O&M costs in 2030 with $4.5/kW. Coal operation and maintenance is slightly 
cheaper than gas-CC on a per kW basis, while nuclear is the most expensive unit to operate at 
$66/kW in 2030.  

Readers could refer to He et. al (2020)2 for more details regarding the cost settings in our 
study 

  


